
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 302 (2007) 564–576

www.elsevier.com/locate/jsvi
Stability of damped membranes and plates
with distributed inputs

Haiyu Zhao, Christopher D. Rahn�

The Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA

Received 25 May 2005; received in revised form 8 February 2006; accepted 20 November 2006

Available online 31 January 2007
Abstract

This paper proves the stability of boundary and distributed damped membranes and Kirchhoff plates under distributed

inputs. Distributed viscous or Kelvin–Voigt damping ensures a weakly bounded response to a bounded transverse loading

for pinned membranes and clamped plates. Damping on part of the boundary can also weakly stabilize the forced

response, provided the damped and undamped boundary normals satisfy certain conditions. For example, damping on half

and one side of the boundary is sufficient for circular and rectangular domains, respectively.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Many engineering applications have distributed parameter models governed by partial differential
equations. Often forcing of unknown but bounded magnitude disturbs the system and the boundedness of the
response needs to be determined. Without damping, flexible structures are not stable due to resonances
corresponding to natural frequencies in the system. Bounded sinusoidal inputs at these frequencies cause an
unbounded response.

One approach to determine the stability of distributed parameter flexible systems is to discretize using
Galerkin, FEM, or finite difference approximations [1]. The system reduces to a set of finite, second-order
differential equations with mass, damping, and stiffness matrices. These systems are exponentially (and
bounded input–bounded output) stable if the stiffness matrix is positive definite (no rigid body modes) and the
damping matrix satisfies complete or pervasive damping conditions [2]. Unfortunately, these conditions only
apply to the discretized model, not the full order distributed system.

Recently, researchers have made progress in the stability analysis of distributed parameter systems.
Cavalcanti and Oquendo [3] show exponential and polynomial decay for a partially viscoelastic nonlinear
wave equation subject to nonlinear and localized frictional damping. Cheng [4] proves the continuity of the
input/output map for boundary control systems through the system transfer function. Komornik [5] and
Lagnese [6] use the multiplier method to prove the boundary stabilization of membranes and plates. Guesmia
[7] provides decay estimates when integral inequalities cannot be applied due to the lack of dissipativity. Zhao
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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and Rahn [8] apply the energy multiplier method to damped strings and beams, proving bounded response to
distributed inputs.

This paper extends the approach in Ref. [8] to two-dimensional membranes and plates by using the
Lyapunov-based energy multiplier method and a variety of integral inequalities [9–12]. Distributed viscous
and material damping and boundary damping are shown to weakly stabilize the response to bounded
distributed inputs. The energy multiplier method is used because the mathematics are relatively simple
(compared to semigroup analysis, for example) and the functionals derived as part of the stability
analysis can be used for Lyapunov-based (e.g. adaptive [13], iterative [14], and repetitive [15]) control
development.
2. Mathematical preliminaries

Viscoelastic material behavior, frictional interaction between contacting surfaces, or movement through a
dissipative fluid cause damping in flexible structures. Distributed (viscous and material) and boundary
(viscous) damping are analyzed in this paper. Viscous damping forces are produced when the structure moves
through fluid and are proportional to transverse velocity. Kelvin–Voigt damping is due to material
viscoelasticity and proportional to material strain rate.

The following equalities and inequalities are used extensively in this paper and are presented without proof
(see Refs. [9–12] for details). Throughout the paper, we assume that a two-dimensional open, bounded,
connected, Lipschitz domain with boundary G is defined.
2.1. Equalities

The divergence theorem applies to vector fields V ¼ Pðx1; x2ÞiþQðx1; x2Þj as follows:Z
O

qP

qx1
þ

qQ

qx2

� �
dx ¼

Z
G
ðPdx2 �Qdx1Þ. (1)

The normal derivative of wðx; tÞ is defined as

qw

qn
¼ rw � n on G, (2)

where n is the unit-normal vector to G pointing toward the exterior of O.
The following integral equalities apply to w 2 H1ðOÞ and u 2 H2ðOÞ:Z

O
Duwdx ¼

Z
G

qu
qn

wdG�
Z
O
ru � rwdx, ð3ÞZ

O
r � rwdx ¼

Z
G
ðr � nÞwdG�

Z
O
ðr � rÞwdx. ð4Þ

The divergence of products can be calculated as follows:

r � ðwaÞ ¼ wr � aþ ðrwÞ � a, ð5Þ

rða � bÞ ¼ a� ðr � bÞ þ b� ðr � aÞ þ ðr � aÞbþ ðr � bÞa, ð6Þ

where r, a, b are two-dimensional vectors.
2.2. Inequalities

The nonlinear damping inequality is

ða � bÞpdjaj2 þ
1

d
jbj2. (7)
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The Poincaré inequality Z
O

w2 dxpm1

Z
O
jrwj2 dx (8)

holds 8w 2 H2ðOÞ with w ¼ 0 on G for some constant m140. The Sobolev inequality isZ
G1

w2 dxpm2

Z
O
jrwj2 dx 8w 2 H1ðOÞ, (9)

where m2 is a positive constant, G ¼ G0 [ G1, and w ¼ 0 on G0.
3. Damped membranes

For the damped membrane model shown in Fig. 1, we assume that the membrane is inextensible and
perfectly flexible, the in-plane stress P is constant, and bounded distributed forcing f ðx; tÞ is applied in the
domain O. First, a membrane with distributed viscous and material damping is considered. Then, we consider
a membrane without damping in the field equation and with a damped boundary condition on G1 with the
remaining boundary G0 pinned.
3.1. Distributed damped membranes

The field equation, boundary conditions, and initial conditions of the damped membrane are:

r €wþ b _w�DD _w� PDw ¼ f in O� Rþ, ð10Þ

wðx; tÞ ¼ 0 on G� Rþ, ð11Þ

wðx; 0Þ ¼ w0 on O, ð12Þ

_wðx; 0Þ ¼ _w0 on O, ð13Þ

where dots indicate time differentiation, r is the mass/area, b is viscous damping, D is Kelvin–Voigt damping,
G is the boundary, O is the domain, and n is the unit-normal vector to G pointing toward the exterior of O.
We assume the models presented in this paper are well-posed and possess a unique solution for all initial
conditions and bounded inputs. We prove weak stability or boundedness of the response wðx; tÞ to strongly
or pointwise bounded disturbances jf ðx; tÞjoMo1, 8x 2 O and t40 (f 2L1ðOÞ). This means that we show
the energy, a quadratic functional of the distributed displacement and velocity, is bounded (EðtÞ 2L1).
We do not prove, however, that the displacement is pointwise or strongly bounded.

Theorem 1. The response of the damped membrane governed by Eqs. (10)–(13) is weakly bounded if either b or D

is nonzero and f ðx; tÞ 2L1ðOÞ.
Fig. 1. Schematic diagram of a distributed damped membrane/plate with distributed disturbances.
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Proof. The energy of the membrane

E ¼
1

2

Z
O
ðr _w2 þ Pjrwj2ÞdxX0 (14)

has a time rate of change which can be upper bounded by

_E ¼

Z
O
_w f � b _wþDD _wþ PDwð Þ þ Prw � r _w½ �dx

pd1

Z
O
_w2 dxþ

1

d1

Z
O

f 2 dx� b

Z
O
_w2 dxþD

Z
G

q _w
qn

_wdG

�D

Z
O
jr _wj2 dxþ P

Z
G

qw

qn
_wdG� P

Z
O
ðrw � r _wÞdx

þ P

Z
O
ðrw � r _wÞdx

p� bþ
D

2m1
� d1

� �Z
O
_w2 dx�

D

2

Z
O
jr _wj2 dxþ

1

d1

Z
O

f 2 dx, ð15Þ

where Eqs. (3), (7), and (8) are used. Inequality of Eq. (15) lacks the
R
O jrwj2 term that appears in E. We

therefore define a new functional by adding the crossing term CðtÞ

V ðtÞ ¼ EðtÞ þ bCðtÞ, (16)

where b40 and

CðtÞ ¼ r
Z
O
_wwdx. (17)

The functional V ðtÞ is positive because

jCðtÞjp
1

2
r
Z
O
ð _w2 þ w2Þdx

p
1

2
r
Z
O
ð _w2 þm1jrwj2Þdx

p
rmaxð1;m1Þ

minðr;PÞ
1

2

Z
O
ðr _w2 þ Pjrwj2Þdx

¼ ZE, ð18Þ

using inequalities in Eqs. (7) and (8), where

Z ¼
rmaxð1;m1Þ

minðr;PÞ
. (19)

This means that

0pl1EðtÞpV ðtÞpl2EðtÞ, (20)

where l1 ¼ 1� bZ40, and l2 ¼ 1þ bZ41, for sufficiently small b. Differentiation of the crossing term
produces

_C ¼

Z
O
r €w wdxþ

Z
O
r _w2 dx

¼

Z
O

f � b _wþDD _wþ PDwð Þwdxþ r
Z
O
_w2 dx

¼ r
Z
O
_w2 dxþ _C1 þ _C2 þ _C3 þ _C4. ð21Þ
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The terms in Eq. (21) simplify as follows:

_C1 ¼

Z
O

fwdx

pd2

Z
O

w2 dxþ
1

d2

Z
O

f 2 dx

pd2m1

Z
O
jrwj2 dxþ

1

d2

Z
O

f 2 dx, ð22Þ

_C2 ¼ �

Z
O

b _wwdx

pbd3

Z
O

w2 dxþ
b

d3

Z
O
_w2 dx

pbm1d3

Z
O
jrwj2 dxþ

b

d3

Z
O
_w2 dx, ð23Þ

_C3 ¼

Z
O

DwD _wdx

¼ D

Z
G

q _w
qn

wdG�D

Z
O
rw � r _wð Þdx

pDd4

Z
O
jrwj2 dxþ

D

d4

Z
O
jr _wj2 dx, ð24Þ

_C4 ¼

Z
O

PwDwdx

¼

Z
G

P
qw

qn
wdG� P

Z
O
jrwj2 dx

¼ � P

Z
O
jrwj2 dx, ð25Þ

using the boundary condition of Eq. (11) and Eqs. (3), (7), and (8). Substitution of Eqs. (22)–(25) into Eq. (21)
yields

_Cp� ½P� ðd2 þ bd3Þm1 �Dd4�
Z
O
jrwj2 dxþ

1

d2

Z
O

f 2 dx

þ rþ
b

d3

� �Z
O
_w2 dxþ

D

d4

Z
O
jr _wj2 dx. ð26Þ

Substitution of the derivative of the crossing term of (Eq. (26)) into Eq. (14) produces

_Vp� bþ
D

2m1
� d1 � b rþ

b

d3

� �� �Z
O
_w2 dx

� b½P� ðd2 þ bd3Þm1 �Dd4�
Z
O
jrwj2 dx

�D
1

2
�

b
d4

� �Z
O
jr _wj2 dxþ

1

d1
þ

b
d2

� �Z
O

f 2 dx

p� l3E þ e, ð27Þ
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where, for sufficiently small b, d1, d2, d3, and d4,

1

2
X

b
d4

, ð28Þ

e1 ¼ bþ
D

2m1
� d1 � b rþ

b

d3

� �
40, ð29Þ

e2 ¼ b½P� ðd2 þ bd3Þm1 �Dd4�40, ð30Þ

e ¼
1

d1
þ

b
d2

� �
max

t2½0;1Þ

Z
O

f 2 dxo1, ð31Þ

l3 ¼
minðe1;e2Þ
maxðr;PÞ

40 ð32Þ

for bounded f. By using Eq. (20), we obtain

_Vp� lV þ e, (33)

where l ¼ l3=l2, with the solution

V ðtÞpV ð0Þe�lt þ
e
l
2L1 (34)

and

EðtÞp
1

l1
V ðtÞ 2 L1: & (35)

Thus, the system is weakly stable with respect to the energy norm.
3.2. Boundary damped membranes

We remove the distributed damping in Eq. (10) to obtain the two-dimensional wave equation with partially
damped boundary conditions shown in Fig. 2. The governing equations are:

r €w� PDw ¼ f in O� Rþ, ð36Þ

w ¼ 0 on G0 � Rþ, ð37Þ

P
qw

qn
þ c _w ¼ 0 on G1 � Rþ, ð38Þ
Fig. 2. Schematic diagram of a boundary damped membrane/plate with distributed disturbances.
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where G ¼ G0 [ G1, c is the boundary viscous damping coefficient, and the initial conditions are given in
Eqs. (12) and (13). We assume the boundary normals satisfy

r � np0 on G0, ð39Þ

r � n40 on G1, ð40Þ

where r ¼ x� x0 and x0 2 R
2 [5,6].

Theorem 2. The response of the boundary damped membrane governed by Eqs. (36)–(38) is weakly bounded if

c40, f 2L1ðOÞ, and the boundary normal conditions given in Eqs. (39) and (40) are satisfied.

Proof. The energy given in Eq. (14) has a time derivative

_E ¼

Z
O
ð _wf þ P _wDwþ Prw � r _wÞdx

p� c

Z
G1

_w2 dGþ d1

Z
O
_w2 dxþ

1

d1

Z
O

f 2 dx ð41Þ

using Eqs. (3), (7), and (38).
The boundary damper does not match the distributed input, providing neither a negative kinetic nor

potential energy domain integral. A positive functional is defined as in Eq. (16) with a different crossing term

CðtÞ ¼ C1 þ C2, (42)

where C1 ¼ 2
R
O r _wðr � rwÞdx and C2 ¼

R
O r _wwdx.

We bound the crossing term of Eq. (42) with respect to the system energy as follows:

jCðtÞjp2rR

Z
O
j _wjjrwjdxþ

1

2
r
Z
O
ð _w2 þ w2Þdx

p
2rR

2

Z
O
ð _w2 þ jrwj2Þdxþ

1

2
r
Z
O
ð _w2 þm1jrwj2Þdx

pZE, ð43Þ

by using Eqs. (7) and (8), where

R ¼ sup
G1

krðxÞk, ð44Þ

Z ¼
rmax½ð2Rþ 1Þ; ð2Rþm1Þ�

minðr;PÞ
. ð45Þ

The time derivative of the crossing term of Eq. (42) depends on

_C1 ¼ 2

Z
O
ðf þ PDwÞðr � rwÞdxþ 2r

Z
O
_wðr � r _wÞdx

p2R

Z
O
jf jjrwjdxþ 2P

Z
O
Dwðr � rwÞdx

þ 2r
Z
O
_wðr � r _wÞdx

p2Rd2

Z
O
jrwj2 dxþ

2R

d2

Z
O

f 2 dxþ _C3 þ _C4, ð46Þ

where the inequality in Eq. (7) is used.
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The third term in Eq. (46) simplifies as follows:

_C3 ¼ 2P

Z
O
Dwðr � rwÞdx

¼ 2P

Z
G
ðr � nÞjrwj2 dG� 2P

Z
O
jrwj2 dx� P

Z
O
r � rðjrwj2Þdx

p
Rc2

P

Z
G1

_w2 dG, ð47Þ

using the boundary conditions (Eqs. (37) and (38), Eqs. (2)–(4), and Eq. (7)). Based on Eq. (2) and the
boundary condition of Eq. (39), 2P

R
G0
ðr � nÞjrwj2 dGp0 is dropped from Eq. (47). The fourth term in Eq. (46)

can be written as

_C4 ¼ 2r
Z
O
_wðr � r _wÞdx

p2rR

Z
G1

_w2 dG� 4r
Z
O
_w2 dx� _C4 ð48Þ

by using the boundary conditions given by Eqs. (2) and (7). Solving Eq. (48) yields

_C4prR

Z
G1

_w2 dG� 2r
Z
O
_w2 dx. (49)

The time derivative of crossing term C2 can be written as

_C2 ¼

Z
O
ðf þ PDwÞwdxþ r

Z
O
_w2 dx

p� P� d3m1 �
1

2
cm2

� � Z
O
jrwj2 dxþ r

Z
O
_w2 dx

þ
1

d3

Z
O

f 2 dxþ
1

2
c

Z
G1

_w2 dG ð50Þ

by using Eq. (3) and Eqs. (7)–(9). Substitution of Eqs. (42), (46), (47) and (49) into Eq. (16) yields

_Vp� c� b R
c2

P
þ r

� �
þ

1

2
c

� �� �Z
G1

_w2 dG

� b P� 2Rd2 � d3m1 �
1

2
cm2

� � Z
O
jrwj2 dx

� br� d1ð Þ

Z
O
_w2 dx

þ
1

d1
þ b

2R

d2
þ

1

d3

� �� �Z
O

f 2 dx, ð51Þ

where for sufficiently small b, d1, d2, and d3,

cXb R
c2

P
þ r

� �
þ

1

2
c

� �
, ð52Þ

e1 ¼ br� d140, ð53Þ

e2 ¼ b P� 2Rd2 � d3m1 �
1

2
cm2

� �
40, ð54Þ

e ¼
1

d1
þ

2bR

d2
þ

b
d3

� �
max

t2½0;1Þ

Z
O

f 2 dx, ð55Þ

l3 ¼
minðe1;e2Þ
maxðr;PÞ

40. ð56Þ

Therefore, Eq. (35) holds and the response is weakly bounded. &
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Fig. 3. Circular (solid) and rectangular (dashed) domain showing damped (thin) and undamped (thick) boundaries.
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The partially damped boundary normal conditions given in Eqs. (39) and (40) require damping on part of
the boundary (G1a+). We are free to choose x0 to determine the minimal G1 for stability. If x0 is located at
the center of a star shaped domain, then the entire boundary has r � n40 so G1 ¼ G and the entire boundary
must be damped. Locating x0 outside O, however leads to G0a+ and part of the boundary need not be
damped. In Fig. 3 are shown example circular (solid) and rectangular (dashed) domains with x0eO. In both
cases, damping is not required on ab. In the limit as x0!1, half of the circular domain is damped. For the
rectangular domain as x0!1, r � no0 on ab and r � n ¼ 0 on bc and da, so r � np0 on da [ ab [ bc: Thus,
only one side cd ¼ G1 requires damping.
4. Distributed plates

In this section, we investigate the stability of distributed and boundary damped Kirchhoff plates with
distributed excitation. We assume the plates are inextensible and homogeneous with uniform cross-section.
4.1. Distributed damped plates

The field equation of the distributed damped plate includes distributed viscous and material damping and
forcing:

r €wþ b _wþDD2 _wþDED
2w ¼ f in O� Rþ, (57)

with boundary condition

w ¼ 0 on G� Rþ, ð58Þ

qw

qn
¼ 0 on G� Rþ, ð59Þ

where DE is the plate flexural rigidity. The initial conditions are given in Eqs. (12) and (13).

Theorem 3. The response of the damped plate governed by Eqs. (57)–(59) is weakly bounded if either b or D is

nonzero and f 2L1.

Proof. The energy of the plate is

E ¼
1

2

Z
O

2ð1� mÞ
q2w

qx1qx2

� �2

�
q2w

qx2
1

q2w
qx2

2

" #
þ r _w2 þDEðDwÞ2

( )
dx, (60)

where m is Poisson’s ratio. The Gaussian curvature 2ð1� mÞ½ðq2w=ðqx1qx2ÞÞ
2
� ðq2w=qx2

1Þðq
2w=qx2

2Þ� com-
plicates the energy. For a clamped plate with either a rectangular domain or a smooth boundary, however, the
Gaussian curvature integral is zero [12].
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Elimination of the Gaussian curvature integral and differentiation of Eq. (60) produces

_E ¼

Z
O
½ _wðf � b _w�DD2 _w�DED

2wÞ þDEDwD _w�dx

p� bþ
D

2m2
1

� d1

� �Z
O
_w2 dxþ

1

d1

Z
O

f 2 dx�
D

2

Z
O
ðD _wÞ2 dx, ð61Þ

when Eqs. (2), (3), (7) and (8) are used.
Both viscous and material damping match the disturbance input, producing a negative kinetic energy term

in _E. The energy cannot be used to prove stability, however, because the time derivative lacks the
�
R
OðDwÞ2 dx term that is found in E. We therefore add the crossing term in Eq. (17) to form positive

functional of Eq. (16). The crossing term can be bounded by Eq. (18), where

Z ¼
rmaxð1;m2

1Þ

minðr;DEÞ
. (62)

The time derivative of the crossing term given in Eq. (17) has the form of Eq. (26) with

_C3pDd4

Z
O
ðDwÞ2 dxþ

D

d4

Z
O
ðD _wÞ2 dx (63)

and

_C4 ¼ �DE

Z
O
ðDwÞ2 dx. (64)

Substitution of Eqs. (22), (23), (63) and (64) into Eq. (26) produces

_Vp� bþ
D

2m2
1

� d1 � b rþ
b

d3

� �� �Z
O
_w2 dx

� b½DE � ðd2 þ bd3Þm2
1 �Dd4�

Z
O
ðDwÞ2 dx

�D
1

2
�

b
d4

� �Z
O
ðD _wÞ2 dxþ

1

d1
þ

b
d2

� �Z
O

f 2 dx

p� l3E þ e, ð65Þ

where, for sufficiently small b, d1, d2, d3, and d4,

1

2
X

b
d4

, ð66Þ

e1 ¼ bþ
D

2m2
1

� d1 � b rþ
b

d3

� �
40, ð67Þ

e2 ¼ b½DE � ðd2 þ bd3Þm2
1 �Dd4�40, ð68Þ

e ¼
1

d1
þ

b
d2

� �
max

t2½0;1Þ

Z
O

f 2 dxo1, ð69Þ

l3 ¼
minðe1; e2Þ
maxðr;DEÞ

40. ð70Þ

Therefore, Eq. (35) holds and the system is weakly stable. &
4.2. Boundary damped plates

For the boundary clamped plate model, the viscous and material damping are removed from the field
equation and clamped boundary condition is changed to a damper on G1. The field equation and boundary
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conditions are:

r €wþDED
2w ¼ f in O� Rþ, ð71Þ

w ¼ 0 on G0 � Rþ, ð72Þ

q
qn

w ¼ 0 on G0 � Rþ, ð73Þ

Dw ¼ 0 on G1 � Rþ, ð74Þ

DE

q
qn

Dw� c _w ¼ 0 on G1 � Rþ, ð75Þ

and the initial conditions are given in Eqs. (12) and (13).

Theorem 4. The response of the boundary damped plate governed by Eqs. (71)–(75) is bounded if c40,
f 2L1ðOÞ, and the normal boundary conditions given in Eqs. (39) and (40) are satisfied.

Proof. The time derivative of the energy can be expressed as

_Ep� c

Z
G1

_w2 dGþ d1

Z
O
_w2 dxþ

1

d1

Z
O

f 2 dx, (76)

using the boundary conditions and Eq. (7).
The boundary damper does not match the distributed input, providing neither a negative kinetic nor potential

energy domain integral term. A positive functional is defined as in Eq. (16) with a different crossing term

CðtÞ ¼

Z
O
r _wðr � rwÞdx. (77)

We can bound this crossing term with respect to the system energy as in Eq. (43) by using Eqs. (7), (8) and (44),
where

Z ¼
rRmaxð1;m1Þ

minðr;DEÞ
. (78)

The time derivative of the crossing term can be expressed as

_C ¼

Z
O
ðf �DED

2wÞðr � rwÞdxþ

Z
O
r _wðr � r _wÞdx

pRm1d2

Z
O
ðDwÞ2 dxþ

R

d2

Z
O

f 2 dxþ _C3 þ _C4, ð79Þ

by using Eqs. (2), (4), (7) and (8).
The third term in Eq. (79) simplifies as follows:

_C3 ¼ �

Z
O

DED
2wðr � rwÞdx

¼ �DE

Z
G

qDw

qn
ðr � rwÞdG�DE

Z
O
Dðr � rwÞDwdx

þDE

Z
G
Dw

q
qn
ðr � rwÞdG

¼ �DE

Z
G

qDw

qn
ðr � rwÞdG�

1

2
DE

Z
O
r � rðDwÞ2 dx

þDE

Z
G
Dw½rðr � rwÞ � n�dG� 2DE

Z
O
ðDwÞ2 dx
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p
Rc

d3

Z
G1

_w2 dGþ Rcd3

Z
G1

jrwj2 dG

þ
1

2
DE

Z
G0

ðr � nÞðDwÞ2 dG�DE

Z
O
ðDwÞ2 dx

p� DE � Rcm2d3ð Þ

Z
O
ðDwÞ2 dxþ

Rc

d3

Z
G1

_w2 dG, ð80Þ

when using the boundary conditions and Eqs. (2)–(8). Based on the boundary conditions in Eq. (39),
1
2

DE

R
G0
ðr � nÞðDwÞ2 dGp0 can be dropped. The fourth term in Eq. (79) can be expressed as

_C4 ¼

Z
O
r _wðr � r _wÞdx

p
rR

2

Z
G1

_w2 dG� r
Z
O
_w2 dx, ð81Þ

by using the boundary conditions and Eqs. (2), (4) and (44).
Substitution of Eqs. (76), (79)–(81) into Eq. (16) produces

_Vp� c� bR
r
2
þ

c

d3

� �� �Z
G1

_w2 dG

� br� d1ð Þ

Z
O
_w2 dxþ

1

d1
þ

bR

d2

� �Z
O

f 2 dx

� b½DE � Rðm1d2 � cm2d3Þ�
Z
O
ðDwÞ2 dx

p� l3E þ e, ð82Þ

where, for sufficiently small b, d1, d2, and d3,

cXbR
r
2
þ

c

d3

� �
, ð83Þ

e1 ¼ br� d140, ð84Þ

e2 ¼ bðDE � Rm1d2 � Rcm2d3Þ40, ð85Þ

e ¼
1

d1
þ

bR

d2

� �
max

t2½0;1Þ

Z
O

f 2 dxo1, ð86Þ

l3 ¼
min e1; e2ð Þ

max r;DEð Þ
40. ð87Þ

Therefore, Eq. (35) holds and the response is weakly stable. &
5. Conclusions

In this paper it has been shown that distributed and boundary damping can ensure a bounded response
for pinned membranes and clamped plates under distributed excitation. Either external, viscous damping
or internal, material damping ensures weak stability with respect to the energy norm. The distributed input
can include spatial and time variations provided it is L2 spatially and L1 temporally bounded,
respectively. Thus, time-bounded point forces are allowed because they have a bounded L2 spatial norm.
Boundary damping must satisfy the normal boundary conditions given in Eqs. (39) and (40) to ensure
stability. Circular and rectangular domains satisfy these conditions with damping on half and one side,
respectively. For each of the cases studied, e ¼ 0 if f ¼ 0 so without inputs these systems are weakly
exponentially stable.
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